Matemática

1. Seja M uma matriz real 2×2. Defina uma função f na qual cada elemento da matriz se desloca para a posição seguinte no sentido horário, ou seja, se $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, implica que $f(M)=\left(\begin{array}{ll}c & a \\ d & b\end{array}\right)$. Encontre todas as matrizes simétricas 2×2 reais na qual $M^{2}=f(M)$.

Resolução:

Se M é simétrica, então $\mathrm{M}=\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{b} & \mathrm{d}\end{array}\right)$.
Dessa forma, se queremos $\mathrm{M}^{2}=f(\mathrm{M})$:
$\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)=\left(\begin{array}{ll}b & a \\ d & b\end{array}\right) \Rightarrow \begin{cases}a^{2}+b^{2}=b & \text { (i) } \\ a b+b d=a & \text { (ii) } \\ a b+b d=d & \text { (iii) } \\ b^{2}+d^{2}=b & \text { (iv) }\end{cases}$
(ii) e (iii) $\Rightarrow \mathrm{a}=\mathrm{d}$

Portanto, basta resolver: $\left\{\begin{array}{l}a^{2}+b^{2}=b \\ 2 a b=a\end{array}\right.$
(II) $\Rightarrow \mathrm{a}=0$ ou $\mathrm{b}=\frac{1}{2}$

Se $a=0 \Rightarrow b=0$ ou $b=1$
Se $b=\frac{1}{2} \Rightarrow a^{2}+\frac{1}{4}=\frac{1}{2} \Rightarrow a= \pm \frac{1}{2}$

Portanto:

$$
\mathrm{M}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \mathrm{M}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \mathrm{M}=\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \text { ou } \mathrm{M}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

|ME

Matemática

2. Resolva a inequação, onde $x \in \mathbb{R}$.

$$
\frac{9 x^{2}}{(1-\sqrt{3 x+1})^{2}}>4
$$

Resolução:

Primeiramente, fazendo a condição de existência, tem-se: $1-\sqrt{3 x+1} \neq 0$ e $3 x+1 \geq 0$, o que implica $x \neq 0$ e $x \geq-\frac{1}{3}$.

Agora, pode-se fazer:
$\frac{9 x^{2}}{(1-\sqrt{3 x+1})^{2}} \cdot \frac{(1+\sqrt{3 x+1})^{2}}{(1+\sqrt{3 x+1})^{2}}>4 \Rightarrow$
$\Rightarrow(1+\sqrt{3 x+1})^{2}>4 \Rightarrow\left\{\begin{array}{l}1+\sqrt{3 x+1}<-2 \\ \text { ou } \\ 1+\sqrt{3 x+1}>2\end{array}\right.$
Como $\sqrt{3 x+1} \geq 0$, tem-se que $1+\sqrt{3 x+1}<-2$ não convém. Portanto:
$1+\sqrt{3 x+1}>2 \Rightarrow \sqrt{3 x+1}>1 \Rightarrow x>0$
$\mathrm{S}=\mathbb{R}_{+}^{*}$
3. Resolva o sistema de equações, onde $x \in \mathbb{R}$ e $y \in \mathbb{R}$.

$$
\left\{\begin{array}{l}
\log _{3}\left(\log _{\sqrt{3}} x\right)-\log _{\sqrt{3}}\left(\log _{3} y\right)=1 \\
(y \sqrt[3]{x})^{2}=3^{143}
\end{array}\right.
$$

Resolução:
Condição de existência:

$$
\left\{\begin{array}{l}
x>0 \\
y>0 \\
\log _{\sqrt{3}} x>0 \Rightarrow x>1 \\
\log _{3} y>0 \Rightarrow y>1
\end{array}\right.
$$

(I) $\left\{\begin{array}{l}\log _{3}\left(\log _{3} x^{2}\right)-\log _{3}\left(\log _{3} y\right)^{2}=1 \\ \frac{2}{3}\end{array}\right.$
(II) $\left\{\log _{3}\left(y^{2} \cdot x^{\frac{2}{3}}\right)=143\right.$
(I) $\left\{\begin{array}{l}\log _{3}\left[\frac{\log _{3} x^{2}}{\left(\log _{3} y\right)^{2}}\right]=1 \\ \text { (II) } \log _{3} y^{2}+\log _{3} x^{\frac{2}{3}}=143\end{array}\right.$
(I) $\left\{\log _{3} x^{2}=3 \cdot\left(\log _{3} y\right)^{2}\right.$
\Rightarrow (II) $2 \log _{3} y+\frac{1}{3} \log _{3} x^{2}=143$

Substituindo (I) em (II), tem-se:
(II) $2 \log _{3} y+\left(\log _{3} y\right)^{2}=143$

Tomando $\log _{3} \mathrm{y}=\mathrm{k}$:

$$
k^{2}+2 k-143=0\left\{\begin{array}{l}
k_{1}=11 \\
k_{2}=-13 \text { (não satisfaz a condição de existência) }
\end{array}\right.
$$

Portanto, $\log _{3} y=11 \Rightarrow y=3^{11}$
Substituindo o valor encontrado em (I):
(I) $\log _{3} x^{2}=3\left(\log _{3} 3^{11}\right)^{2} \Rightarrow \log _{3} x^{2}=3 \cdot 121 \Rightarrow x=3^{\frac{363}{2}}$

Portanto, o conjunto solução e: $\mathrm{S}=\left\{\left(3^{\frac{363}{2}}, 3^{11}\right)\right\}$

Matemática
4. Classifique o sistema abaixo como determinado, possível indeterminado e impossível de acordo com os valores reais de m.

$$
\left\{\begin{array}{l}
(m-2) x+2 y-z=m+1 \\
2 x+m y+2 z=m^{2}+2 \\
2 m x+2(m+1) y+(m+1) z=m^{3}+3
\end{array}\right.
$$

Resolução:
Para que o sistema seja determinado, precisamos que $D=\left|\begin{array}{ccc}m-2 & 2 & -1 \\ 2 & m & 2 \\ 2 m & 2 m+2 & m+1\end{array}\right|=m^{3}-3 m^{2}+2 m$ seja diferente de zero, ou seja, $\mathrm{m} \neq 0, \mathrm{~m} \neq 1 \mathrm{e} \mathrm{m} \neq 2$.

- Agora, se m $=0$, tem-se:

$$
\left\{\begin{array} { l }
{ - 2 x + 2 y - z = 1 } \\
{ 2 x + 0 y + 2 z = 2 } \\
{ 0 x + 2 y + z = 3 }
\end{array} \sim \left\{\begin{array}{l}
-2 x+2 y-z=1 \\
2 y+z=3 \\
0 x+0 y+0 z=0
\end{array} \Rightarrow\right.\right. \text { Possível indeterminado }
$$

- Se $\mathrm{m}=1$, tem-se:

$$
\left\{\begin{array} { l }
{ - x + 2 y - z = 2 } \\
{ 2 x + y + 2 z = 3 } \\
{ 2 x + 4 y + 2 z = 4 }
\end{array} \sim \left\{\begin{array}{l}
-x+2 y-z=2 \\
5 y=7 \\
0 x+0 y+0 z=2
\end{array} \Rightarrow\right.\right. \text { Sistema é impossível }
$$

- $\operatorname{Se} \mathrm{m}=2$, tem-se:

$$
\left\{\begin{array} { l }
{ 0 x + 2 y - z = 3 } \\
{ 2 x + 2 y + 2 z = 6 } \\
{ 4 x + 6 y + 3 z = 1 1 }
\end{array} \sim \left\{\begin{array}{l}
x+y+z=3 \\
2 y-z=3 \\
0 x+0 y+0 z=4
\end{array} \Rightarrow\right.\right. \text { Sistema é impossível }
$$

Portanto:

$$
\text { SPD } \Leftrightarrow \mathrm{m} \neq 0, \mathrm{~m} \neq 1 \mathrm{e} \mathrm{~m} \neq 2
$$

SPI $\Leftrightarrow \mathrm{m}=0$
SI $\Leftrightarrow \mathrm{m}=1$ ou $\mathrm{m}=2$

Matemática

5. Sejam os complexos $z=a+b i$ e $w=47+c i$, tais que $z^{3}+w=0$. Determine o valor de a, b e c, sabendo que esses números são inteiros e positivos.

Resolução:

Como $\mathrm{z}=\mathrm{a}+\mathrm{bi}$, então:
$z^{3}=\left(a^{3}-3 a b^{2}\right)+\left(3 a^{2} b-b^{3}\right) i$
Assim, temos, da equação dada:
$\mathrm{z}^{3}=-\mathrm{w} \Rightarrow \mathrm{z}^{3}=-47-\mathrm{ci}$
Por (I):
$\left(a^{3}-3 a b^{2}\right)+\left(3 a^{2} b-b^{3}\right) i=-47-c i$
Comparando as partes reais e imaginárias:
$\left\{\begin{array}{l}a^{3}-3 a b^{2}=-47(1) \\ 3 a^{2} b-b^{3}=-c\end{array}\right.$
Da equação (1):
$\mathrm{a}\left(\mathrm{a}^{2}-3 \mathrm{~b}^{2}\right)=-47 \rightarrow$ Como $\mathrm{a}, \mathrm{b} \in \mathbb{Z}_{+}^{*}$, então $\mathrm{a} \mid 47$.
Daí $\mathrm{a}=1$ ou $\mathrm{a}=47$.
Testando as soluções:
i) \quad Para $a=1$

$$
1\left(1^{2}-3 b^{2}\right)=-47 \Rightarrow 3 b^{2}=48 \Rightarrow b=4
$$

Substituindo em (2): $3 \cdot 1^{2} \cdot 4-4^{3}=-\mathrm{c} \Rightarrow \mathrm{c}=52$
ii) Para $\mathrm{a}=47$

$$
47\left(47^{2}-3 b^{2}\right)=-47 \Rightarrow 3 b^{2}-47^{2}=1 \Rightarrow b^{2}=\frac{2210}{3} \Rightarrow b \notin \mathbb{Z}_{+}^{*} .
$$

Assim, para $\mathrm{a}=47$ não há solução nos inteiros.
Dessa forma, a única solução é:

$$
\mathrm{a}=1 \quad \mathrm{~b}=4 \quad \mathrm{c}=52
$$

RESOLVE

Matemática

6. Um triângulo ABC tem o seu vértice A na origem do sistema cartesiano, seu baricentro é o ponto $\mathrm{D}(3,2)$ e seu circuncentro é o ponto $\mathrm{E}(55 / 18,5 / 6)$. Determine:

- a equação da circunferência circunscrita ao triângulo ABC ;
- as coordenadas dos vértices BeC.

Resolução:

a) Sendo R o raio da circunferência circunscrita, tem-se:

$$
\mathrm{R}=\mathrm{AE}=\sqrt{\left(\frac{55}{18}-0\right)^{2}+\left(\frac{5}{6}-0\right)^{2}}=\sqrt{\frac{3250}{324}}
$$

Logo, a equação da circunferência circunscrita ao triângulo é:
$\left(x-\frac{55}{18}\right)^{2}+\left(y-\frac{5}{6}\right)^{2}=\frac{3250}{324}$
b) Seja M o ponto médio de $\overline{\mathrm{BC}}$. Como $\mathrm{D}=(3,2)$ é o baricentro do $\triangle \mathrm{ABC}$ e A, D e M estão alinhados na mediana $\overline{\mathrm{AM}}$, com $\overrightarrow{\mathrm{DM}}=\frac{1}{2} \overrightarrow{\mathrm{AD}}$, tem-se:

$$
\mathrm{M}=\mathrm{D}+\frac{1}{2} \overrightarrow{\mathrm{AD}}=(3,2)+\frac{1}{2}(3-0,2-0)=\left(\frac{9}{2}, 3\right)
$$

A reta $\overparen{\mathrm{EM}}$ é mediatriz de $\overline{\mathrm{BC}}$. Portanto, $\mathrm{m}_{\overline{\mathrm{BC}}}=-\frac{1}{\mathrm{~m}_{\overline{\mathrm{EM}}}}=\frac{1}{\frac{\frac{5}{6}-3}{\frac{55}{18}-\frac{9}{2}}}=-\frac{2}{3}$
Como $\mathrm{M}=\left(\frac{9}{2}, 3\right)$ pertence à reta $\stackrel{\rightharpoonup}{\mathrm{BC}}$, a equação de $\stackrel{\rightharpoonup}{\mathrm{BC}}$ é dada por
$y-3=-\frac{2}{3}\left(x-\frac{9}{2}\right) \Leftrightarrow y=-\frac{2}{3} x+6$
Dado que BeC pertencem à circunferência e à reta $\overleftrightarrow{\mathrm{BC}}$, substituindo (2) em (1), tem-se:

$$
\begin{aligned}
& \left(x-\frac{55}{18}\right)^{2}+\left(-\frac{2}{3} x+6-\frac{5}{6}\right)^{2}=\frac{3250}{324} \Leftrightarrow \\
& \frac{13}{9} x^{2}-\frac{117}{9} x+\frac{8424}{324}=0 \Leftrightarrow \\
& x=3 \text { ou } x=6 .
\end{aligned}
$$

Substituindo na equação da reta $\overleftrightarrow{\mathrm{BC}}$:

$$
\begin{aligned}
& x=3 \Rightarrow y=-\frac{2}{3} \cdot 3+6=4 \\
& x=6 \Rightarrow y=-\frac{2}{3} \cdot 6+6=2
\end{aligned}
$$

Matemática
7. $\mathrm{Se} \frac{\cos x}{\cos y}+\frac{\operatorname{sen} x}{\operatorname{sen} y}=-1$, calcule o valor S.

$$
S=\frac{3 \cos y+\cos 3 y}{\cos x}+\frac{3 \operatorname{sen} y-\operatorname{sen} 3 y}{\operatorname{sen} x}
$$

Resolução:

$$
\begin{aligned}
& \operatorname{De} \frac{\cos x}{\cos y}+\frac{\operatorname{sen} x}{\operatorname{sen} y}=-1, \text { tem }-\operatorname{se}: \frac{\operatorname{sen} y \cdot \cos x+\operatorname{sen} x \cdot \cos y}{\operatorname{sen} y \cdot \cos y}=-1 \\
& \operatorname{sen}(x+y)=-\operatorname{sen} y \cdot \cos y \text { (I) } \\
& \operatorname{sen}(x+y)=-\frac{1}{2} \cdot \operatorname{sen}(2 y) \text { (II) }
\end{aligned}
$$

Das identidades $\left\{\begin{array}{l}\operatorname{sen}(3 y)=3 \operatorname{sen} y-4 \operatorname{sen}^{3} y \\ \cos (3 y)=4 \cos ^{3} y-3 \cos y\end{array}\right.$, tem-se que $\left\{\begin{array}{l}3 \operatorname{sen} y-\operatorname{sen}(3 y)=4 \operatorname{sen}^{3} y \\ 3 \cos y+\cos (3 y)=4 \cos ^{3} y\end{array}\right.$, portanto:

$$
S=\frac{3 \cos y+\cos (3 y)}{\cos x}+\frac{3 \operatorname{sen} y-\operatorname{sen}(3 y)}{\operatorname{sen} x}=\frac{4 \cos ^{3} y}{\cos x}+\frac{4 \operatorname{sen}^{3} y}{\operatorname{sen} x}=\frac{4 \operatorname{sen} x \cdot \cos ^{3} y+4 \operatorname{sen}^{3} y \cdot \cos x}{\operatorname{sen} x \cdot \cos x}
$$

Sendo N a expressão no numerador de S , tem-se:

$$
N=4 \operatorname{sen} x \cdot \cos y \cdot \cos ^{2} y+4 \operatorname{sen}^{2} y \cdot \operatorname{sen} y \cdot \cos x
$$

Da relação fundamental da trigonometria:

$$
\begin{aligned}
& N=4 \operatorname{sen} x \cdot \cos y\left(1-\operatorname{sen}^{2} y\right)+4\left(1-\cos ^{2} y\right) \cdot \operatorname{sen} y \cdot \cos x \\
& N=4 \operatorname{sen} x \cdot \cos y-4 \operatorname{sen} x \cdot \cos y \cdot \operatorname{sen}^{2} y+4 \operatorname{sen} y \cdot \cos x-4 \cos ^{2} y \cdot \operatorname{sen} y \cdot \cos x \\
& N=4(\operatorname{sen} x \cdot \cos y+\operatorname{sen} y \cdot \cos x)-4 \operatorname{sen} y \cdot \cos y \cdot(\cos x \cdot \cos y+\operatorname{sen} x \cdot \operatorname{sen} y) \\
& N=4 \operatorname{sen}(x+y)-4 \operatorname{sen} y \cdot \cos y \cdot \cos (x-y)
\end{aligned}
$$

Então, da relação (I), tem-se:

$$
N=4 \operatorname{sen}(x+y)+4 \cdot \operatorname{sen}(x+y) \cdot \cos (x-y)
$$

Da relação (II) e das relações de prostaferese, tem-se:

$$
N=-2 \operatorname{sen}(2 y)+2 \operatorname{sen}(2 x)+2 \operatorname{sen}(2 y)=2 \operatorname{sen}(2 x)
$$

Assim, $S=\frac{2 \cdot \operatorname{sen}(2 x)}{\operatorname{sen} x \cdot \cos x}=\frac{2 \cdot 2 \cdot \operatorname{sen} x \cdot \cos x}{\operatorname{sen} x \cdot \cos x}$. Portanto: $S=4$

Matemática

8. Seja $A=\{1,2,3,4\}$.

- Quantas funções de A para A têm exatamente 2 elementos em seu conjunto imagem?
- Entre as 256 funções de A para A, sorteiam-se as funções f e g, podendo haver repetição. Qual a probabilidade da função composta $f \circ g$ ser uma função constante?

Resolução:

- Para responder quantas funções $f: \mathrm{A} \rightarrow \mathrm{A}$ têm $\mathrm{n}(\operatorname{Im} f)=2$, pode-se dividir o problema em duas partes:
- Escolher os dois elementos: $\mathrm{C}_{4,2}$ possibilidades;
- Distribuir os dois elementos como imagens de $\{1,2,3,4\}: 2^{4}-2$.

Portanto, haverá $\mathrm{C}_{4,2} \cdot\left(2^{4}-2\right)=84$ possibilidades

- Para $f \circ g$ ser constante, é preciso que:
(I) f seja qualquer e g constante: $256 \cdot 4=1.024$ pares de funções.
(II) $\operatorname{Im}_{\mathrm{g}}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{a} \neq \mathrm{b} \mathrm{e} f(\mathrm{a})=f(\mathrm{~b}): 84 \cdot 4^{3}=5.376$ pares de funções.
(III) $\mathrm{Im}_{\mathrm{g}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{a} \neq \mathbf{b} \neq \mathbf{c} \neq \mathrm{a}$ e $f(\mathrm{a})=f(\mathrm{~b})=f(\mathrm{c})$:

Como há 4 funções constantes, 84 funções com 2 imagens e $4!=24$ funções com 4 imagens, restam 144 funções com 3 imagens. Logo, $144 \cdot 4^{2}=2304$ pares de funções.
(IV) $\operatorname{Im}_{g}=\{1,2,3,4\}$ e f é constante: $24 \cdot 4=96$ pares de funç̃es.

Assim, $\mathrm{P}=\frac{8800}{256^{2}} \Rightarrow \mathrm{P}=\frac{275}{2.048}$

Matemática

9. Em um triângulo ABC , a medida da bissetriz interna AD é a média geométrica entre as medidas dos segmentos BD e DC , e a medida da mediana AM é a média geométrica entre os lados AB e AC . Os pontos D e M estão sobre o lado BC da medida a. Pede-se determinar os lados AB e AC do triângulo ABC em função de a.

Resolução:

Desenhando separadamente cada situação, tem-se:

1) Para bissetriz

Pelo teorema da bissetriz interna:

$$
\begin{equation*}
\frac{c}{m}=\frac{b}{n} \rightarrow \frac{b+c}{m+n}=\frac{c}{m} \Rightarrow \frac{b+c}{a}=\frac{c}{m} \Rightarrow m=\frac{a c}{b+c} \tag{I}
\end{equation*}
$$

Analogamente, $\mathrm{n}=\frac{\mathrm{ab}}{\mathrm{b}+\mathrm{c}}$. (II)
Pelo teorema de Stewart, tem-se:
$\mathrm{b}^{2} \mathrm{~m}+\mathrm{c}^{2} \mathrm{n}=\mathrm{m} \cdot \mathrm{n} \cdot \mathrm{a}+(\sqrt{\mathrm{mn}})^{2} \cdot \mathrm{a}$
De (I) e (II):
$\frac{b^{2} \cdot a c}{(b+c)}+\frac{c^{2} \cdot a b}{(b+c)}=\frac{a c}{(b+c)} \cdot \frac{a b}{b+c} \cdot a+\frac{a c}{(b+c)} \cdot \frac{a b}{b+c} \cdot a \Rightarrow$
$\Rightarrow \mathrm{b}^{2} \mathrm{c}+\mathrm{c}^{2} \mathrm{~b}=\frac{\mathrm{a}^{2} \mathrm{bc}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{a}^{2} \mathrm{bc}}{\mathrm{b}+\mathrm{c}} \rightarrow \mathrm{bc}(\mathrm{b}+\mathrm{c})=\frac{2 \mathrm{a}^{2} \mathrm{bc}}{(\mathrm{b}+\mathrm{c})} \Rightarrow$ $\Rightarrow 2 \mathrm{a}^{2}=(\mathrm{b}+\mathrm{c})^{2} \rightarrow \mathrm{~b}+\mathrm{c}=\mathrm{a} \sqrt{2}$ (1)
2) Para a mediana:

Por Stewart:

$$
\begin{align*}
& b^{2} \frac{a}{2}+c^{2} \frac{a}{2}=\frac{a}{2} \cdot \frac{a}{2} \cdot a+(\sqrt{b c})^{2} a \Rightarrow \\
& \Rightarrow \frac{b^{2}+c^{2}}{2}=\frac{a^{2}}{4}+b c \Rightarrow \\
& b^{2}+c^{2}-2 b c=\frac{a^{2}}{2} \Rightarrow \\
& (b-c)^{2}=\frac{a^{2}}{2} \Rightarrow|b-c|=\frac{a \sqrt{2}}{2} \tag{2}
\end{align*}
$$

Assim, das equações (1) e (2):

$$
\left\{\begin{array}{l}
b+c=a \sqrt{2} \\
|b-c|=\frac{a \sqrt{2}}{2}
\end{array}\right.
$$

Supondo $\mathrm{b}>\mathrm{c}$, tem-se:

$$
\begin{aligned}
& 2 \mathrm{~b}=\mathrm{a}\left(\sqrt{2}+\frac{\sqrt{2}}{2}\right) \rightarrow 2 \mathrm{~b}=\frac{3 \sqrt{2}}{2} \mathrm{a} \Rightarrow \mathrm{~b}=\frac{3 \sqrt{2}}{4} \mathrm{a} \rightarrow \mathrm{c}=\frac{\sqrt{2}}{4} \mathrm{a} \\
& \text { Portanto: } \overline{\mathrm{BC}}=\frac{3 \sqrt{2}}{4} \mathrm{a} \text { e } \overline{\mathrm{AB}}=\frac{\sqrt{2}}{4} \mathrm{a} . \\
& \text { Analogamente, se } \mathrm{c}>\mathrm{b}, \text { tem-se: } \overline{\mathrm{BC}}=\frac{\sqrt{2}}{4} \mathrm{a} e \overline{\mathrm{AB}}=\frac{3 \sqrt{2}}{4} \mathrm{a}
\end{aligned}
$$

Matemática

10. Em um cone equilátero são inscritas duas esferas de raios $\frac{\sqrt{3-1}}{\sqrt{3+1}} R$ e R, conforme a figura abaixo. Um plano secante ao cone é traçado de forma que este seja tangente às duas esferas. Determine em termos de R o maior segmento possivel que une dois pontos da curva formada pela interseção do referido plano com o cone.

Resolução:

O plano tangente às duas esferas dadas, de centro C_{1} e C_{2} e raios r R , determina uma elipse na sua interseção com o cone. Os focos F_{1} e F_{2} da elipse são os pontos de tangência do plano com as esferas. O maior segmento possível que une dois pontos da elipse é o eixo maior $\overline{\mathrm{AB}}$. Fazendo $\mathrm{AB}=2 \mathrm{a}$ e $\mathrm{F}_{1} \mathrm{~F}_{2}=2 \mathrm{c}$, tem-se:
$\frac{2 \mathrm{c}}{2 \mathrm{a}}=\mathrm{e} \Rightarrow 2 \mathrm{a}=\frac{2 \mathrm{c}}{\mathrm{e}}(1)$, em que e é a excentricidade da elipse.
Sendo $\alpha \mathrm{o}$ ângulo formado entre as geratrizes do cone e o eixo $\mathrm{e} \beta \mathrm{o}$ ângulo formado entre o plano e o eixo, sabe-se que:

$e=\frac{\cos \beta}{\cos \alpha}(2)$

Vamos aos cálculos. Tem-se que:
$\frac{r}{R}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \Rightarrow r=(2-\sqrt{3}) R$
No cone equilátero, a seção meridiana é um triângulo equilátero, sendo C_{2} o baricentro. Assim: $\mathrm{VC}_{2}=2 \mathrm{R}$
$\frac{\mathrm{VC}_{1}}{\mathrm{VC}_{2}}=\frac{\mathrm{r}}{\mathrm{R}} \Rightarrow \frac{\mathrm{VC}_{1}}{2 \mathrm{R}}=2-\sqrt{3} \Rightarrow \mathrm{VC}_{1}=(2-\sqrt{3}) \cdot 2 \mathrm{R}$
A distância entre os dois centros é dada por:
$\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{VC}_{2}-\mathrm{VC}_{1}=2 \mathrm{R}-(2-\sqrt{3}) 2 \mathrm{R}=(\sqrt{3}-1) 2 \mathrm{R}$

Transladando o segmento $\overline{\mathrm{F}_{1}}$ até $\overline{\mathrm{C}_{1} \mathrm{~F}_{2}}$, construimos o triângulo retângulo $\mathrm{C}_{1} \mathrm{~F}_{2}{ }^{\prime} \mathrm{C}_{2}$ com
$\mathrm{C}_{1} \mathrm{C}_{2}=2 \mathrm{R}(\sqrt{3}-1)$
$\mathrm{C}_{2} \mathrm{~F}_{2}^{\prime}=\mathrm{R}+\mathrm{r}=\mathrm{R}+(2-\sqrt{3}) \mathrm{R}=(3-\sqrt{3}) \mathrm{R}$
$\mathrm{C}_{1} \mathrm{~F}_{2}{ }^{\prime}=\sqrt{\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)^{2}-\left(\mathrm{C}_{2} \mathrm{~F}_{2}\right)^{2}}=\mathrm{R} \sqrt{4-2 \sqrt{3}}=\mathrm{R}(\sqrt{3}-1)$
Como $\overline{\mathrm{F}_{1} \mathrm{~F}_{2}} / / \overline{\mathrm{C}_{1} \mathrm{~F}_{2}}$, tem-se $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{~F}_{2}{ }^{\prime}=\beta$ e $2 \mathrm{c}=\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{C}_{1} \mathrm{~F}_{2}{ }^{\prime}=\mathrm{R}(\sqrt{3}-1)$.
Tem-se $\cos \beta=\frac{C_{1} F_{2},}{C_{1} C_{2}}=\frac{R(\sqrt{3}-1)}{2 R(\sqrt{3}-1)}=\frac{1}{2} \Rightarrow \beta=60^{\circ}$
No cone equilátero, o ângulo α entre a geratriz e o eixo é $\alpha=30^{\circ}$. Substituindo em (2):
$\mathrm{e}=\frac{\cos 60^{\circ}}{\cos 30^{\circ}}=\frac{1}{\sqrt{3}}$
Finalmente, substituindo em (1), obtém-se a distância pedida:
$2 \mathrm{a}=\frac{2 \mathrm{c}}{\mathrm{e}}=\frac{\mathrm{R}(\sqrt{3}-1)}{\frac{1}{\sqrt{3}}} \Rightarrow 2 \mathrm{a}=\mathrm{R}(3-\sqrt{3})$

